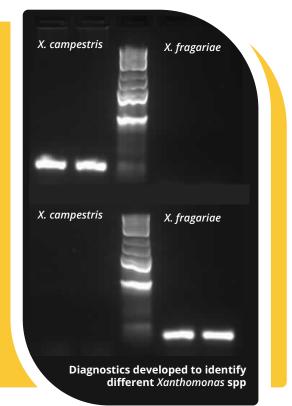


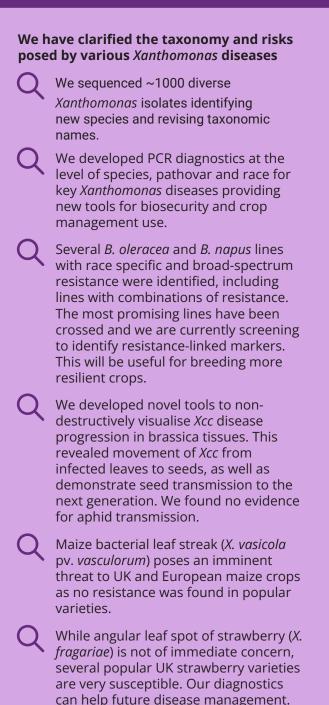
MITIGATING THE IMPACT OF XANTHOMONAS DISEASES ON CROPS

Xanthomonas includes diverse, widespread and damaging bacterial plant pathogens

Bacteria of the genus *Xanthomonas* can cause disease in more than 350 plant species including many economically important crops. For example, black rot, caused by *Xanthomonas campestris* pv. *campestris* (Xcc), is a major disease of brassicas like cabbage and cauliflower in the UK.


Climate change and plant imports are increasing the threat posed by other *Xanthomonas* species. Although currently absent or rare, diseases like bacterial leaf streak of maize (caused by *X. vasicola* pv. *vasculorum*), angular leaf spot of strawberry (caused by *X. fragariae*), and black rot of watercress (caused by *X. nasturtii*) are of significant concern to the UK.

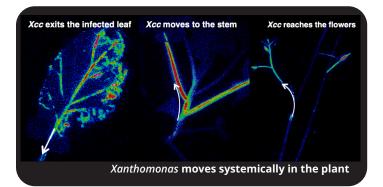
Accurate diagnostics are essential for informed disease and biosecurity management. Large-scale whole genome sequencing of diverse *Xanthomonas* isolates can facilitate development of species, pathovar and even race-specific genetic markers. It can also identify novel species and aid taxonomic reclassification. For brassica improvement, genetically mapping black rot resistance can support breeding programmes.


Our research used genetic sequencing and imaging to better understand Xanthomonas infections and screened for disease resistance in brassicas, strawberry and maize

Whole-genome sequencing of ~1000 *Xanthomonas* isolates enabled detailed classification of relationships in the *Xanthomonas* genus. We identified novel species, made taxonomic reclassifications, and developed highly specific diagnostic markers which can discriminate species, pathovars or races.

Screening unique lines of *Brassica oleracea* (cabbage species) and *Brassica napus* (rapeseed and swede species) lines identified useful sources of resistance to Xcc. We also screened two *Xanthomonas* species considered to represent a real biosecurity threat to the UK; *X. fragariae* on strawberry varieties and *X. vasicola* pv. *vasculorum* on some popular maize varieties.

Discoveries



Recommendations

Our diagnostics can be deployed in both disease management and biosecurity to facilitate rapid identification and containment of diseases.

- Encourage use of our diagnostic assays and genomic resources to detect different Xanthomonas pathogens.
- Adopt and adapt our Xcc racediagnostics to monitor diversity and evolution which in turn will help establish the effectiveness of varietal resistances.
- Use resistance-linked molecular markers to incorporate our racespecific and broad-spectrum resistances into commercial crops.
- Employ the imaging tools developed to gain a more detailed understanding of *Xanthomonas* virulence mechanisms.

Add bacterial leaf streak of maize (X. vasicola pv. vasculorum) to the Plant Health Risk Register and regulate it.

Bacterial leaf streak symptoms on maize

For more information contact:

Prof Murray Grant - email: m.grant@warwick.ac.uk or visit https://bacterialplantdiseases.uk/xanthomonas-threats/

To access the Xanthomonas genomic data visit PhytoBacExplorer https://phytobacexplorer.warwick.ac.uk/

An interdisciplinary research consortium working together to understand bacterial plant diseases to protect UK farms, forests and gardens.

Scottish Government Riaghaltas na h-Alba aov.scot

Biotechnology and

Biological Sciences Research Council

Natural Environment Research Council

Department or Environment ood & Rural Affairs